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Abstract A recent airborne study obtained extensive measurements in the tropical tropopause layer
(TTL) over the western Pacific and provided the first opportunity to examine the relationship between
water vapor and temperature in the coldest region and season of the TTL using high‐resolution in situ data.
Analysis of this data set verifies key hypotheses in Lagrangian simulations of TTL transport and freeze
drying. Furthermore, the observations provide a number of new insights into the transport process: In the
layer below the lapse rate tropopause, vertical transport from upward motion dominates the relative
humidity structure; final dehydration, dominated by large‐scale horizontal advection, occurs in the layer
transacting the cold point tropopause that is often above the lapse rate tropopause, resulting in water vapor
mixing ratios with corresponding frost points consistent with the coldest temperatures of the region, lower
than the temperatures of the local cold points.

Plain Language Summary Stratospheric water vapor plays a significant role in the Earth's
climate. Understanding the mechanisms regulating the amount of stratospheric water vapor is essential
for predictions of future climate. Due to uncertainties in dehydration mechanisms, correctly simulating
stratospheric water vapor is challenging for global climate models. Although a broad conceptual
understanding of the atmospheric freeze‐drying process was established by the mid‐twentieth century,
quantitative understanding of how transport and microphysics interact to control stratospheric water vapor
is still limited. In situ measurements in the coldest region of the tropical tropopause layer made using the
NASA Global Hawk unmanned aircraft present a significant data set for making new progress in this area
of research.

1. Introduction

The conceptual framework of the tropical tropopause layer (TTL) was developed over a 10‐year period
starting around 2000, largely motivated by the challenge of understanding the mechanisms controlling
stratospheric water vapor and its climate impact (de Forster & Shine, 2002; Dessler et al., 2013; Solomon
et al., 2010). The core TTL concept as proposed by Hartmann et al. (2001) and Holton and Gettelman
(2001) emphasizes the importance of horizontal transport in dehydrating the air mass that eventually enter
the stratosphere. These works hypothesized that final dehydration of slowly rising TTL air was largely driven
by horizontal cycling of air though the cold tropopause region over the tropical western Pacific (TWP). This
process could explain why the observed lower stratospheric water vapor mixing ratio is significantly lower
than that expected from the minimum temperature of the local tropopause. This hypothesis has since been
quantitatively evaluated in a number of Lagrangian model analyses (Fueglistaler et al., 2004; Gettelman
et al., 2002; Krüger et al., 2008; Rex et al., 2014; Schoeberl & Dessler, 2011). These modeling studies led to
the concept of the Lagrangian Cold Point (LCP), the location at which air parcels encounter the minimum
saturation mixing ratio (typically at the coldest temperature) along their path to the stratosphere. This series
of studies also showed that the highest concentration and the coldest LCPs occur during boreal winter over
the TWP. The LCP concept resolves the controversy surrounding the earlier “stratospheric fountain”
hypothesis (Newell &Gould‐Stewart, 1981), which suggested that transport of air into the stratosphere occurs
preferentially over the TWP.

To verify this hypothesis observationally, in situ measurements from dedicated field campaigns are critical,
since the existing satellite data do not have the necessary spatial resolution to resolve the dehydration
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signature. Although a number of airborne field campaigns have targeted the TTL and dehydration
mechanisms (MacKenzie et al., 2006; Schiller et al., 2009; Toon et al., 2010), it was not until 2014 that
the first significant set of in situ measurements in the TTL over the TWP, the region of largest
concentration of LCP, was obtained in the NASA Airborne Tropical Tropopause Experiment (ATTREX;
Jensen, Pfister et al., 2017).

In this letter, we present an analysis of simultaneous high spatial resolution measurements of water vapor
and temperature over the TWP from ATTREX. The main objective is to present observational evidence for
the importance of horizontal transport‐driven dehydration and the associated role of the LCP. This analysis
is closely related to recent works on relative humidity distribution in the TTL (Jensen et al., 2017; Rollins
et al., 2016; Schoeberl et al., 2019) and on lapse rate and cold point tropopause (CPT) definitions (Pan
et al., 2018).

2. ATTREX Observations and Radiosondes

The NASA ATTREX 2014 deployment to the TWP (Eric J. Jensen et al., 2017) conducted six research flights,
totaling ~100 flight hours, with the Global Hawk unmanned aircraft system from Guam (13.5°N, 144.8°E)
during February and March. The analysis presented here uses mainly atmospheric state parameters, espe-
cially temperature data, measured by the Meteorological Measurement System (Scott et al., 1990), and water
vapor (H2O) data, measured by the NOAA‐H2O two‐channel, internal‐path tunable diode laser hygrometer
(Thornberry et al., 2015), both onboard the Global Hawk. These data are reported at 1 Hz, corresponding to
typical horizontal and vertical scales of 160 and <20 m, respectively. The measurement uncertainty of the
H2O is 6% ± 0.23 ppmv (Thornberry et al., 2015). Combined with the temperature and pressure uncertainties
of ±0.3 K and ±0.5 hPa, the uncertainty of the derived relative humidity with respect to ice (RHi) for the
range of measurements is less than 15%.

The meteorological conditions of the TTL over the TWP during the campaign period are described in detail
in the ATTREX overview article, including the dynamical background of each flight (Jensen, Pfister et al.,
2017). Figure 1 shows the flight tracks of the six ATTREX 2014 research flights, highlighting that the

Figure 1. Global Hawk flight tracks for the six research flights during ATTREX 2014 and the mean 100‐hPa temperature
for the flight period (15 January to 15 March 2014) from NCEP/NCAR reanalysis data (Kalnay et al., 1996). The
thickness of the lines for the flight tracks is inversely scaled by the pressure level of the flight, highlighting the nearly
continuous vertical profiling between approximately 14.5 and 18.5 km as the key feature of the flight pattern. Locations of
six regional National Weather Service stations are shown by yellow dots with station ID.
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flights were conducted near the region of the coldest tropopause tempera-
tures. Also shown in the figure are locations of six regional National
Weather Service (NWS) stations, where radiosondes are launched twice
daily at 0Z and 12Z. Radiosonde temperature profiles from these stations
are provided in 100‐m vertical resolutions and are used in the analysis to
complement the airborne data.

3. Vertical and Horizontal Motion‐Driven
Dehydration Revealed by RHi in Tropopause
Relative Coordinates

Physically, dehydration in the TTL is a freeze‐drying process whereby ice
crystals form and their growth and sedimentation remove water vapor in
excess of ice saturation. The RHi of an air mass is controlled by coupled
transport and microphysical processes. RHi can therefore be used as an
effective tracer for the transport history of dehydration (Jensen,
Thornberry, et al., 2017, and references therein). In this work, we focus
on an analysis of RHi using tropopause relative coordinates, which serve
to combine lapse rate information with RHi to diagnose the transport
process driving dehydration. Both the lapse rate tropopause (LRT;
World Meteorological Organization, 1957) and the CPT (Highwood &
Hoskins, 1998) are used. Note that the analysis presented in Pan et al.
(2018) demonstrated that the LRT is a better identifier of the tropical
tropopause. The RHi analysis below provides further evidence for
this conclusion.

Figure 2 shows the distribution of RHi derived from in situ data using all
Global Hawk profiles within the region from 20°S to 20°N latitude range
and 130°E to 180°E longitude range. The distributions are shown as
layer‐normalized relative frequency using three different vertical coordi-
nates: GPS altitudes (Figure 2a), adjusted LRT relative altitudes
(Figure 2b), and adjusted CPT relative altitudes (Figure 2c). The
adjusted relative altitude coordinates, Zar, are defined by altitude relative
to the tropopause and adjusted by the mean tropopause altitude,
following equation (1):

Zar ¼ ZTP þ Z−ZTPð Þ; (1)

where Z is regular altitude, ZTP is the corresponding tropopause (LRT or

CPT) altitude for the profile, and ZTP is the average tropopause (Pan &
Munchak, 2011). The layer‐normalized relative frequency is calculated
using the number of samples in each RHi bin divided by the number in
the highest sampling bin in the same layer.

The RHi distributions in the three coordinates show broad ranges
including supersaturation up to approximately 160%. A detailed analysis
and quantification of supersaturation has been given in Rollins et al.
(2016) and Jensen, Thornberry, et al. (2017). In this work, we focus on
themodal profiles of the RHi distribution, that is, the vertical distribution
of the layer maxima, which reveals the dominant relationship between
saturation processes and the temperature structure.

Contrasting the modal profiles in three different coordinates, a number of
features become apparent. Foremost, the modal profile in LRT relative
altitude coordinate (Figure 2b) shows a strong discontinuity in the
dehydration process at the tropopause. The approximately 100% RHi

Figure 2. Layer‐normalized relative frequency distributions of relative
humidity with respect to ice in three vertical coordinates: (a) GPS altitude,
(b) adjusted lapse rate tropopause (LRT) relative altitude, and (c) adjusted
cold point tropopause (CPT) relative altitude. The average LRT and CPT
heights from all profiles are shown as red and blue dashed lines, respec-
tively. The bin size is 0.1 km vertically and 5% horizontally. To provide
information on the height and distributions of the LRT and CPT, the
minimum, maximum, and 25 and 75 percentiles are given by the box‐and‐
whisker plots on the right side of each panel. The mean and the median in
each case are given in blue and black ticks, respectively, in the box.
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modal value between 14 km and the LRT indicates that upward vertical motion dominates the dehydration
process below the LRT. The vertical motions attributed to diabatic and adiabatic processes have been
analyzed using reanalysis data (Schoeberl et al., 2019). The relatively low altitude of the level of zero
radiative heating and the anomalously strong positive heating over the wintertime western Pacific may
also contribute to the prevalence of saturated air during the season (Jensen et al., 2015; Yang et al., 2010).
Although the flights were planned to avoid convective activities so no immediate convective process was
sampled during ATTREX flights, indirect convective influence is still possible from ubiquitous convection
over the TWP during the season that left the saturated air behind.

The near 100% RHi mode also appears in the CPT relative coordinates (Figure 2c). There is, however, a
bimodal structure in the 1.5 km below the CPT: a saturated mode (near 100% RHi) and a subsaturated
mode (near 50% RHi). These two modes reveal distinct transport histories for the dehydration: While the
saturated mode reflects the in situ dehydration process consistent with vertical motion driven dehydra-
tion, the subsaturated mode reflects nonlocal dehydration, in which the humidity in these air masses

Figure 3. Two selected flights and profiles to provide examples for “local dehydration” and “upstream dehydration.” (a) The flight track of RF03 (white line) and
the tropopause level temperature (color shading) and wind fields (pink arrows). (b) Same as (a) but for RF06. (c) A selected profile fromRF03. See the red segment in
(a) for the profile's location. The four profiles shown are temperature (black), water vapor mixing ratio (dark green) from measurements, the saturation vapor
mixing ratio (light green) derived from the temperature measurements, and derived relative humidity with respect to ice (orange). The light blue shading indicates
the layer of in‐cloud measurements. The lapse rate tropopause and cold point tropopause altitudes are marked by red and blue dashed lines, respectively. For this
profile, they are colocated so only the red is seen. (d) Same as (c) but for a selected profile in RF06. The location of the profile is indicated in (b).

10.1029/2019GL083647Geophysical Research Letters

PAN ET AL. 7851



is a result of quasi‐horizontal transport‐driven dehydration, where the
transported air masses encountered colder temperatures upstream.
Furthermore, the contrast between the two relative coordinate distribu-
tions indicates that these subsaturated air masses were largely observed
in the group of samples between the LRT and CPT.

To help understand these two modes of dehydration, we provide two
sample profiles in Figure 3. Figures 3a and 3c show an example of local,
or in situ, dehydration. In this profile, the LRT and CPT are collocated.
The water vapor profile closely tracks the saturation vapor profile, derived
using temperature measurement, below the tropopause. The figure also
indicates that a thick layer of cloud was present below the tropopause,
where the RHi was near 100%. The second example profile (Figures 3b
and 3d) shows a case of upstream dehydration. Here the LRT and CPT
are separated by more than a kilometer in altitude. The measured water
vapor profile does not exhibit a relationship with the temperature profile,
that is, it does not have a minimum at either the LRT or the CPT. The
entire profile is cloud free and significantly subsaturated.

It is apparent from the tropopause level temperature and wind maps
(Figures 3a and 3b) that these two profiles were sampled under very differ-
ent large‐scale background conditions. The first case was near the region
of extremely low tropopause temperature (~185 K), and the second profile
was sampled in a relatively warm background that is downstream from a
colder region.

To quantify the importance of horizontal transport‐driven dehydration
and the role of the LCP, we examine the relationship between the samples
above the CPT and the two modes in the samples below the CPT
(Figure 2c) for three key variables: H2O, the corresponding frost point
temperature (Tf), and the potential temperature (θ). The three subsets of
data are plotted in Figures 4b–4d as indicated by the three boxes in
Figure 4a. The blue box selects a 0.5‐km depth layer above the CPT, the
cyan box selects the subsaturated mode of data in the 1‐km layer below
the CPT, and the gray box selects the saturated mode in the same relative
coordinate layer. The two modes are separated at 75% RHi.

The most significant message revealed by Figure 4 is that the subsatu-
rated mode (cyan) below the CPT and the single mode in the samples
above the CPT (blue) share similar distributions in all three variables:
They have characteristically identical H2O and Tf, which should be recog-
nized as resulting from upstream LCPs, and are also sampled within
similar range of θ. Note the distribution of sampled CPT temperatures
is included in Figure 4c to show that the local CPT temperature for these
data is on average 1 K warmer than the LCP. This comparison demon-
strates that final dehydration is not controlled by the local CPT but by
a significantly colder group of LCPs. A loose comparison with the average
temperature map for the period (Figure 1) indicates that the distribution
of Tf (LCPs) from the two low H2O groups in Figure 4b corresponds to
the average temperature of the center of the cold trap region, where T

< 190 K, although the daily locations of the coldest region varied during the campaign period (Jensen,
Pfister, et al., 2017).

For the saturatedmode (Figure 4, gray), although its H2O and Tf distributions have a significant overlap with
the other two groups, the distributions of both variables extend to higher values. Its average H2O and Tf are 1
ppmv and 3 K higher. Its θ distribution is also very different from the other two groups and extends to
significantly lower values, indicative of the air masses' tropospheric characteristics.

Figure 4. Histograms of (b) water vapor mixing ratio, (c) dewpoint tempera-
ture, and (d) potential temperature for three groups of measurements,
with color coding (blue, cyan, and gray) that matches the selection boxes in
(a). The three groups are selected to represent the layer above the cold
point tropopause (CPT; depth = 0.5 km, blue), the layer below the CPT
(depth = 1 km) with relative humidity with respect to ice < 75% (cyan) and
relative humidity with respect to ice > 75% (gray). The additional histogram
(red) in (c) is the distribution of CPT temperature from in situ profile
measurements.
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It is interesting to note that although the two groups of measurements, subsaturated (cyan) and saturated
(gray), appear to have the same altitude range relative to the CPT, they represent distinct air masses. On
the other hand, the subsaturated group (cyan) and the group above the CPT (blue), although appearing
on different sides of the local CPTs, are in effect the same air masses, the air masses of minimum H2O in
the measurements.

4. Roles of Tropical Waves in Horizontal Transport‐Driven Dehydration

The significant role of tropical waves in the dehydration process through the CPT temperature perturbation
they generate and cirrus cloud formation they induce near the tropopause is a new component of dehydra-
tion research in the recent decade (e.g., Kim et al., 2016; Kim & Alexander, 2015; Podglajen et al., 2017, and
references therein). In this section, we discuss the role of wave perturbations in connection with horizontal
transport‐driven dehydration. This discussion will also provide an explanation to part of the Figure 4 results,
where the subsaturated samples below the CPT and the samples above the CPT appear to have
similar characteristics.

Figure 5 illustrates the isentropic structure of the region and its relationship to the LRT and CPT, using the
regional NWS sounding data, for selected cross sections. The TWP region is under the influence of various

Figure 5. Isentropic structures and lapse rate tropopause and cold point tropopause heights derived from the National
Weather Service temperature soundings. (a) Time‐height cross section of θ created by twice‐daily sounding data from
PTRO (Koror Palau) for 1 Febuary to 15 March 2014. (b) Longitude‐height cross section of θ derived from five regional
National Weather Service stations data for a selected time (10 March 2014, 0Z). Contours represent 5‐K intervals. Also
shown are the lapse rate tropopause (red) and cold point tropopause (blue) derived from each profile.
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types of tropical waves during the experiment (Jensen, Pfister, et al., 2017; Kim et al., 2016). The day‐to‐day
variation is apparent in the time‐height cross section of θ from the PTRO station temperature soundings
(Figure 5a). The LRT and CPT from each sounding profile are plotted to indicate that the day‐to‐day varia-
tion of the LRT/CPT spans ~2 km in altitude (~16–18 km) and 30‐K potential temperature range (~370–400
K). Despite the rapid vertical displacement, the LRT consistently marks the transition between layers of low
static stability and high static stability, indicated by the sharp change in the vertical gradient of θ (plotted at
5‐K intervals), which meets the expectation for a successful tropopause definition. The increased static
stability above the LRT (indicated by larger gradient of θ) is also a direct indicator that horizontal, quasi‐
adiabatic advection begins to dominate the transport above this level.

An approximate longitude‐height cross section of θ for a selected synoptic time (0Z 10 March) is constructed
using soundings from five NWS stations (Figure 5b) to highlight the “sloping isentropes” that intersect the
center of the coldest layer, marked by the CPT. This snap shot makes it apparent that air masses advected
quasi‐isentropically may encounter multiple CPTs, and only the coldest one sets the ultimate dehydration.
This figure explains the conclusion drawn from Figure 4 that the layer sampled above the CPT and the non-
local dehydration mode sampled below the CPT are in effect the same layer (~370–400 K), since their Tf
share the same distribution. This layer of minimum H2O straddles the CPTs because the tropical waves
distribute the CPTs vertically within this layer.

5. Conclusions and Discussions

We have analyzed ATTREX in situ H2O and temperature data to directly verify the core hypothesis of
dehydration in the TTL. The ATTREX observations verify the hypothesis that horizontal transport above
the top of convection is the key determiner of final dehydration. The analysis provides an observed signa-
ture of LCP, a Lagrangian model‐defined concept.

Using LRT‐ and CPT‐relative coordinates, we arrive at a number of conclusions. Specifically,

1. RHi distributions in LRT‐ and CPT‐relative coordinates show that vertical motion dominates the dehy-
dration process below the LRT. The final dehydration, as diagnosed by the layer of lowest H2O, however,
is dominated by horizontal transport processes during the slow ascent across the layer around the coldest
point, occurring mostly above the LRT in the 370‐ to 400‐K θ layer.

2. The distribution of the frost point temperature for the measured minimum water vapor layer has a mean
value lower than that corresponding to the measured local cold point temperatures, indicating that it is
distinct from the in situ dehydration frost point and consistent with the center of the cold trap, the region
of the seasonally averaged coldest tropopause layer temperature (<190 K). This result verifies the key role
of the LCP, concentrated in the TWP cold trap, in controlling the lower stratospheric water vapor in the
NH winter.

3. The RHi distribution shows that the stratospheric and tropospheric dynamic behavior (vertical‐ vs.
horizontal‐mixing dominated) is separated by the LRT. The final dehydration is therefore
completed in the lower stratosphere as the boundary between stratosphere and troposphere is defined
by the LRT.

4. This analysis also provides a different perspective on the importance of tropical waves in dehydration.
As part of the temperature perturbation, the tropical waves induce vertical fluctuations of the
isentropes and redistribute their relationship with the cold points, which in part facilitates the role
of LCPs.

Since satellite observations lack the vertical resolution in the TTL to resolve the water vapor‐ temperature
relationship in this thin layer and the ATTREX is the first large‐scale airborne campaign in the region,
the results described in this letter are the first direct observational evidence for the horizontal transport‐
driven dehydration hypothesis. These quantitative results, however, are still limited by the duration and
spatial coverage of the campaign. Similar airborne studies are needed to investigate the dehydration process
in the boreal summer season, when mixing from the extratropics and monsoon circulations play a larger
role. Planned TTL measurements using long duration balloons (Haase et al, 2018) will present another
opportunity to quantitatively investigate the global and seasonal behavior of dehydration processes that
regulate stratospheric water vapor.
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